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Abstract We consider a diffusive process in a bounded domain with heterogeneously dis-
tributed traps, reactive regions or relaxing sinks. This is a mathematical model for chemical
reactors with heterogeneous spatial distributions of catalytic germs, for biological cells with
specific arrangements of organelles, and for mineral porous media with relaxing agents in
NMR experiments. We propose a spectral approach for computing survival probabilities
which are represented in the form of a spectral decomposition over the Laplace operator
eigenfunctions. We illustrate the performances of the approach by considering diffusion in-
side the unit disk filled with reactive regions of various shapes and reactivities. The role of
the spatial arrangement of these regions and its influence on the overall reaction rate are in-
vestigated in the long-time regime. When the reactivity is finite, a uniform filling of the disk
is shown to provide the highest reaction rate. Although the heterogeneity tends to reduce the
reaction rate, reactive regions can still be heterogeneously arranged to get nearly optimal
performances.

Keywords Survival probability · Residence time · Heterogeneous media · Diffusion ·
Laplace operator

1 Introduction

Diffusion is a fundamental transport mechanism in physics, chemistry and biology [1–3].
During the diffusive exploration, particles may encounter traps, reactive regions or relaxing
sinks which are distributed either in the bulk, or on the interface. While staying inside or in
vicinity of these specific zones, particles may disappear with a given rate. This is a common
mathematical model for many biological and industrial systems, e.g.
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1. chemical reactors with heterogeneous spatial distributions of catalytic germs [4, 5];
2. biological cells with specific arrangements of organelles [6, 7];
3. mineral porous media with relaxing agents in nuclear magnetic resonance (NMR) exper-

iments [8].

If the system is isolated (no new particle is injected), the survival probability, as well as the
concentration of the survived particles that diffuse in such a medium, decays in time. In the
long-time regime, the survival probability exhibits an exponential decay, and the decay con-
stant (i.e., the average “lifetime” of a diffusing particle) is expected to be proportional to the
total amount, or “strength”, of traps, relaxing sinks or reactive regions. This is a consequence
of the classical Smoluchowski formula Φ ≈ 4πDRc0 for the diffusive flux Φ of particles
which are uniformly distributed with concentration c0 and react on a single absorbing sphere
of radius R, D being the diffusion coefficient of particles [9]. In particular, the diffusive flux
is proportional to the size R of the sphere, not to its surface area 4πR2, as one could naively
expect for reaction on a surface. For n well-separated absorbing spheres (a diluted suspen-
sion), the overall reaction rate k of a single diffusing particle is then k ≈ nΦ/N ≈ 3Dφ/R2,
where N = c0V is the number of diffusing particles and φ = n(4πR3/3)/V is the volume
fraction of absorbing spheres, V being the volume of the medium. It means that the overall
reaction rate k (i.e., the decay constant) is proportional to the volume fraction φ of reactive
grains (i.e., their total amount or “strength”).

Since this seminal result, the survival probability of Brownian motion in reactive porous
media was studied by different mathematical and numerical tools [1–3]. The asymptotic
behavior of the survival probability in randomly located traps and the role of averaging
over trap configurations were analyzed in a series of publications [10–13]. In the long-time
limit, the survived particles reside in large voids, and the statistics of these voids leads to a
stretched-exponential decay of the survival probability. Torquato and co-workers performed
numerous Monte Carlo simulations in order to investigate how the reaction rate k depends on
the volume fraction φ, the shape of individual reactive grains, their polydispersity, overlap-
ping and reactivity, etc. [14–18]. Using the mean-field approximation, Richards proposed an
explicit formula for the survival probability which was shown to be accurate for a wide range
of times [19, 20]. Upper and lower bounds for the reaction rate were derived in a series of
papers by Torquato and co-workers [21–25]. Riley et al. performed Monte Carlo simulations
to study the dependence of the reaction rate on the reactivity and the spatial configuration of
reactive grains [26]. Singer et al. dealt with the narrow escape problem to find an asymptotic
expansion of the expected lifetime of Brownian motion as the absorbing part of the bound-
ary shrinks to zero [27, 28]. Another insight onto this problem was brought by Bénichou and
Voituriez [29]. The case of small traps was considered by Ward and co-workers who derived
a number of rigorous asymptotic results [30–34]. A systematic perturbative approach was
developed by Ryu et al. for studying the role of inhomogeneous spatial absorption [35, 36].
At last, the survival probability is closely related to first-passage and residence times whose
properties have been actively studied during the last years [37–43].

Among various theoretical approaches for describing diffusive motion in confined do-
mains, a spectral theory involving the Laplace operator eigenbasis provides perhaps the most
fundamental insight onto this process. For instance, Brownstein and Tarr employed this de-
scription in order to explain multiexponential relaxation for water in biological cells [8].
During the past decade, several matrix formalisms were developed for both numerical and
theoretical studies of restricted diffusion in NMR [44–49]. Recently, a matrix formalism
was applied for computing the residence times and other functionals of reflected Brownian
motion [50].
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In a nutshell, the description starts from diffusion-reaction equation, in which traps, re-
active regions or relaxing sinks are represented through a spatially heterogeneous trapping,
reaction or relaxation rate B(r). Following the ideas of a quantum mechanics perturba-
tion theory, the reaction term is treated as a “perturbation” to the Laplace operator. The
survival probability is then expressed in a matrix form involving two infinite-dimensional
matrices: the diagonal matrix Λ representing the Laplace operator in its own basis, and a
matrix B representing the reaction rate B(r) in the Laplacian basis. Once these two ma-
trices are computed, analytically or numerically, the survival probability takes an explicit
multi-exponential form. Note that the survival probability can be seen as the cumulative dis-
tribution function of the survival time (i.e., the random moment at which reaction occurs
or, equivalently, up to which the particle survives). The spectral approach thus provides a
complete probabilistic description of the survival time, in sharp contrast to other theoretical
approaches which were focused on the mean survival time.

The paper aims at revealing the role of a spatial heterogeneity B(r) of traps, reactive
regions or relaxing sinks onto the survival probability in the long-time regime. We study
several model arrangements of reactive regions in order to increase the overall reaction per-
formance of a medium, aiming in future at design of efficient catalysts or diffusive exchang-
ers via optimization of their geometrical shapes. In other words, we address the question:
for a fixed total amount or “strength” of reactive regions, what is the “optimal” shape and
arrangement of these regions? Although the spectral approach is applicable to any bounded
confining domain, we illustrate its concepts and performances by considering diffusion in-
side the unit disk which is filled with reactive grains. The explicit form of the Laplace oper-
ator eigenfunctions in the disk significantly simplifies computation and allows one to grasp
the main features of the spectral approach. It is worth stressing that, in contrast to works
by Ward and co-workers [30–34], our approach is not limited to small reactive regions and
is in fact more accurate when these regions are extended. As a consequence, the spectral
approach and perturbative techniques turn out to be complementary to each other.

The paper is organized as follows. In Sect. 2, we recall the derivation of a multi-
exponential form of the survival probability. Section 3 summarizes the main steps for a
numerical implementation of the spectral approach, error estimation and improvements. Nu-
merical results, for both bulk and surface reactivity, are presented in Sect. 4. Some technical
points are reported in Appendices.

2 A Spectral Approach to Survival Probability

2.1 Matrix Representation

We consider independent particles diffusing inside a bounded domain Ω with a smooth
reflecting boundary ∂Ω . At time t = 0, the particles are distributed with a given initial
density ρ(r0). For a given function B(r), a random variable

φt =
∫ t

0
ds B(Xs)

is associated to a random trajectory Xs of the reflected Brownian motion in Ω . Intuitively,
the function B(r) can be thought of as a distribution of “markers” for distinguishing different
points and regions of the confining domain. When the diffusing particle passes through these
regions, the random variable φt accumulates the corresponding “marks”. In other words, dif-
ferent parts of the trajectory are weighted according to the function B(r), encoding thus the
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whole stochastic process. For example, if the bulk contains traps, reactive regions, absorbing
sinks or relaxing impurities, B(r) can represent the distribution of their trapping, reaction,
absorption or relaxation rates, respectively, while φt is the cumulant factor penalizing the
trajectories that pass through these regions. When B(r) is an applied magnetic field, φt is
the total dephasing of the nuclei in a pulsed-gradient spin-echo NMR experiment [47].

We recall that the probability distribution of the random variable φt can be found in
two steps [50]. The first step is based on the classical Kac formula relating the expectation
E{e−hφt } to the solution of a diffusion equation with bulk relaxation [51, 52]. This expecta-
tion includes the average of the functional e−hφt over all the random trajectories {Xs}0≤s≤t

of the reflected Brownian motion between the starting point r0 at time 0 and the arrival
point r at time t , as well as the average over all r0 and r with given initial density ρ(r0) and
weighting function ρ̃(r0) respectively; in this case, Kac formula reads as [50]

E{e−hφt } =
∫

Ω

dr c(r, t)ρ̃(r), (1)

where c(r, t) obeys the equation

∂c(r, t)
∂t

− D	c(r, t) + hB(r)c(r, t) = 0, (2)

with the initial condition c(r0, t = 0) = ρ(r0), and 	 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

is the Laplace

operator in d dimensions. The reflected character of Brownian motion is represented by
Neumann boundary condition, when the normal derivative ∂/∂n at the boundary vanishes:
∂c(r, t)/∂n = 0 on ∂Ω . If B(r) is the distribution of bulk sinks (or their absorption rates),
c(r, t) can be interpreted as the probability density for a Brownian particle, started according
to the initial density ρ(r0), to arrive in an infinitesimal vicinity of the point r at time t , with-
out being trapped, reacted, absorbed or relaxed during its motion. The weighting function
ρ̃(r) allows one to delimit the region of interest inside the confining domain. Since c(r, t)
is weighted by ρ̃(r) in (1), only those Brownian trajectories that arrived into the “pickup”
regions at time t do contribute to the expectation in (1).

At the second step, one uses the Laplace operator eigenfunctions um(r) (m = 0,1,2, . . .)
that satisfy

D	um(r) + λmum(r) = 0 (r ∈ Ω),

∂um(r)
∂n

= 0 (r ∈ ∂Ω),

λm being the Laplace operator eigenvalues. Since the eigenfunctions um(r) form a complete
orthonormal basis, the solution c(r, t) of (2) can be expanded as

c(r, t) =
∑
m′

cm′(t)um′(r).

Substitution of this expansion in (2), multiplication by u∗
m(r), and integration over Ω yield

a set of ordinary differential equations for the unknown coefficients cm(t),

∂cm(t)

∂t
+

∑
m′

(Λm,m′ + hBm,m′)cm′(t) = 0,
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where the infinite-dimensional matrices B and Λ are

Bm,m′ =
∫

Ω

dru∗
m(r)B(r)um′(r),

Λm,m′ = δm,m′λm.

Thinking of cm(t) as components of an infinite-dimensional vector C(t), one easily finds
the solution of the above matrix equation. The expectation E{e−hφt } can thus be written in a
form of a scalar product:

Sh(t) = E{e−hφt } = (Ue−(Λ+hB)t Ũ ), (3)

where the infinite-dimensional vectors U and Ũ represent the projections of the initial den-
sity ρ(r) and the weighting function ρ̃(r) onto the eigenfunctions um(r):

Um =
∫

Ω

dru∗
m(r)ρ(r),

Ũm =
∫

Ω

drum(r)ρ̃(r).

(4)

The matrix e−(hB+Λ)t can be thought of as a kind of evolution operator acting on the ini-
tial state ρ(r) (represented by the vector U ). The resulting density c(r, t) at time t is then
weighted by the weighting function ρ̃(r) (represented by the vector Ũ ). It is important to
note that the matrices B and Λ do not commute.

For a positive h, the expectation E{e−hφt } can be interpreted as the Laplace transform of
the probability density pt(ϕ) of φt ,

E{e−hφt } =
∫ ∞

0
dϕ e−hϕpt (ϕ),

allowing one, at least formally, to find the latter by the inverse Laplace transform. Thus, the
properties of the expectation E{e−hφt } provides a complete probabilistic description of the
random variable φt .

2.2 Multi-exponential Decay

Since the matrix Λ + hB is symmetric, all its eigenvalues γ h
m are real and can be ordered

as γ h
0 ≤ γ h

1 ≤ γ h
2 ≤ · · · . The corresponding eigenvectors form an orthogonal matrix V such

that

Λ + hB = V

⎛
⎜⎜⎝

γ h
0 0 0 0 · · ·
0 γ h

1 0 0 · · ·
0 0 γ h

2 0 · · ·
0 0 0 γ h

3 · · ·

⎞
⎟⎟⎠ V T . (5)

The substitution of (5) into (3) yields

Sh(t) =
∞∑

m=0

Ah
me−γ h

mt , (6)

where

Ah
m = (UV )m(V T Ũ)m. (7)
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The eigenvalues γ h
m define the “lifetimes”, 1/γ h

m, of the eigenmodes, while Ah
m set their

relative contributions to Sh(t). This multi-exponential decay is a generic feature for diffu-
sive processes in bounded reactive media, whatever the spatial heterogeneity B(r) is. For
instance, Brownstein and Tarr derived similar relation for surface relaxation in NMR exper-
iments [8].

In the long-time regime, the only significant contribution comes from the smallest eigen-
value λh

0 which can therefore be interpreted as the overall reaction rate k. In what follows,
the focus will be on this spectral characteristics.

2.3 Residence and Survival Times

How long does a diffusing particle reside in a given subset A of a confining domain Ω up
to time t? This so-called residence (or occupation) time, φt , can be computed through the
spectral approach by setting B(r) = IA(r), where IA(r) is the indicator function of the set
A : IA(r) = 1 for r ∈ A, and 0 otherwise [47, 48, 50, 53]. This function can be thought of
as a “counter” which is turned on whenever the diffusing particle resides in A. The inverse
Laplace transform of the survival probability Sh(t) with respect to h gives, at least formally,
the probability density of the residence time φt (here t is a fixed parameter).

In addition, the survival probability allows one to retrieve the first passage time τ at the
reactive region A. In fact, if a particle hits A during the time interval [0, t], then φt > 0,
while φt = 0 otherwise. So, the limit of E{e−hφt } as h → ∞ is the probability that a random
trajectory Xs does not hit the set A up to time t :

S∞(t) = lim
h→∞

E{e−hφt }.

This is the survival probability in a medium containing infinitely reactive regions, in
which particles react or relax at the first hit, i.e., S∞(t) = P{τ > t}. The time derivative,
−dS∞(t)/dt , is then the probability density of the first passage time τ .

In analogy, the survival probability Sh(t) can be interpreted as the cumulative distribution
function P{τh > t} where τh is the survival time, i.e., a random moment, at which a particle
reacts in a medium with finite reactivity h or, equivalently, up to which the particle survives.
Since a particle may hit a partially reactive boundary many times without being reacted,
the random moment τh at which reaction occurs, can also be termed as “the last passage
time” [54]. The probability density of τh is −∂Sh(t)/∂t .

In summary, the spectral representation (6) allows one to study various time statistics
of the diffusive process in heterogeneous reactive media. In Sect. 4, we analyze the long-
time behavior of the survival probability for surface reaction (A ⊂ ∂Ω) and bulk reaction
(A ⊂ Ω).

3 Numerical Implementation

In this section, we describe an implementation of the spectral approach for computing the
survival probability Sh(t) on the unit interval or the unit disk containing a given reactive
region A. The matrix Λ is formed by the Laplace operator eigenvalues which are known
explicitly for these confining domains, while the computation of the matrix B relies on the
integration of two explicitly known eigenfunctions over A:

Bm,m′ =
∫

A

drum(r)um′(r). (8)
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In what follows, we recall the form of the Laplace operator eigenbasis, describe the main
steps of the numerical algorithm, and discuss accuracy and improvements.

3.1 Eigenbasis in 1D and 2D

For the unit interval Ω = [0,1] with reflecting endpoints, the eigenvalues and eigenfunctions
of the Laplace operator are

λm = π2m2, um(x) = εm cos(πmx) (m = 0,1,2, . . .),

with the normalization constants εm = √
2 for m > 0, and ε0 = 1.

Since the eigenvalues are known explicitly and integrals with cosine functions can be
computed analytically, both matrices Λ and B have explicit forms so that the survival prob-
ability in the unit interval with any reactive region A can easily be found. For example, if A

is the boundary of Ω , A = {0,1}, the matrix B is

Bm,m′ = εmεm′ [1 + (−1)m−m′ ].
Simple computations for the unit interval allow one to analyze in depth the performances of
the spectral approach.

For the unit disk Ω = {r ∈ R
2 : |r| < 1}, the eigenfunctions of the Laplace operator with

Neumann boundary condition are [47, 48, 55–57]

unk0(r, ϕ) =
√

2√
π

βnk

Jn(αnk)
Jn(αnkr) cos(nϕ)

(n > 0),

unk1(r, ϕ) =
√

2√
π

βnk

Jn(αnk)
Jn(αnkr) sin(nϕ) (9)

u0k0(r, ϕ) = 1√
π

β0k

J0(α0k)
J0(α0kr) (n = 0).

For each n ≥ 0, αnk (k = 0,1,2, . . .) denote all the positive roots of the equation:

J ′
n(z) = 0, (10)

where Jn(z) is the Bessel function of the first kind, and prime denotes the derivative. The
eigenvalues are λnk = α2

nk , while the normalization constants βnk are defined as [55]

βnk =
√

λnk

λnk − n2
.

The eigenvalues, eigenfunctions and other spectral quantities are conveniently enumerated
by double or triple index, nk or nkl, instead of a single index m. This enumeration is also
used for the related vectors and matrices, e.g., Bnkl,n′k′l′ is the element of the matrix B (not a
tensor!) that corresponds to the eigenfunctions unkl(r) and un′k′l′(r) (cf. (8)).

3.2 Algorithm

For numerical implementation, the eigenvalues λnk are sorted in an ascending order to trun-
cate the infinite-dimensional matrices B and Λ. The position of the eigenmode in such a
sequence can be used as its single index m.

The numerical algorithm consists of the following steps:
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1. For a chosen truncation size N , to determine the first N Laplace operator eigenvalues λnk

in the unit disk. For this purpose, one finds the first positive roots of (10) with different
values of n by the bisection method. Since the eigenvalues λnk depend only on the con-
fining domain, this step has to be performed only once, and the stored values of λnk can
then be used in following computations.

2. For a given reactive region A, to compute the truncated matrix B of size N × N . Except
for certain specific cases, for which the integral in (8) can be found explicitly by using
the properties of Bessel functions [56, 58], a numerical integration is required. For this
purpose, the region A is conveniently discretized and integrals are approximated by finite
sums. This step is time-consuming and is a major source of numerical inaccuracy.

3. For a given reactivity h, to compute the eigenvalues γ h
m and eigenvectors Vm of the matrix

Λ + hB. This step is the most time-consuming when the size N of the matrix Λ + hB is
large.

4. For a chosen initial density ρ(r) and weighting function ρ̃(r), to find the truncated vec-
tors U and Ũ according to (4). When the starting and arrival points are irrelevant, the
functions ρ(r) and ρ̃(r) are considered to be uniform, in which case Um = Ũm = δm,0. In
other cases, a numerical integration may be required, as in the step 2.

5. To get the amplitudes Ah
m from (7).

6. If necessary, to extrapolate γ h
m and Ah

m to the limit of N going to infinity (see below).

As a result, the survival probability Sh(t) is obtained in its explicit spectral form (6).
The computation involves two approximations: numerical integration in (8) and trunca-

tion of the matrices Λ and B. The first approximation is classical, and its error is relatively
easy to control. The second approximation is more subtle, and its accuracy strongly depends
on the reactive region A. In order to illustrate this point, we consider A to be a small region.
In this case, slowly varying eigenfunctions (i.e., with small eigenvalues) are almost constant
on A so that the corresponding elements of the matrix B are: Bm,m′ ≈ um(rA)um′(rA)SA, SA

being the surface area of A, and rA a point in A. It means that slowly varying eigenfunc-
tions cannot distinguish the shape of a small region A. In order to reveal small geometrical
features of A, highly oscillating eigenfunctions (i.e., with large eigenvalues) have to be in-
cluded. In this sense, the truncation size N determines how accurate the spatial resolution of
a spectral decomposition is. The choice of an appropriate value for N is therefore strongly
dependent on the reactive region A. Since the computational time for finding eigenvalues
and eigenvectors of a matrix of size N × N grows as O(N3), this may be a limiting factor
for using the spectral approach, especially for small reactive regions. In this specific case,
perturbative techniques are preferred [27, 28, 30–34].

3.3 Rotation-invariant Reactive Regions

The above numerical limitation can be overcome when the reaction rate distribution B(r)
is rotation-invariant (i.e., B(r,ϕ) is independent of ϕ). In this case, the Laplace operator
eigenvalues can be grouped in such a way that the matrix B gets a block structure. In fact,
one has

Bnk0,n′k′0 = Bnk1,n′k′1 = 2δn,n′
βnkβnk′

Jn(αnk)Jn(αnk′)

×
∫ 1

0
drrJn(αnkr)Jn(αnk′r)B(r),

Bnk0,n′k′1 = Bnk1,n′k′0 = 0.
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Instead of previously used ascending order, let us now order the first N eigenvalues as

λ00, λ01, . . . , λ0k0 ,︸ ︷︷ ︸
block 0

λ10, λ11, . . . , λ1k1 ,︸ ︷︷ ︸
block 1

. . . λn−1,0, λn−1,1, · · · , λn−1,kn−1 ,︸ ︷︷ ︸
block n−1

λn0︸︷︷︸
block n

,

where the indices k0, k1, . . . are chosen such that λj,kj +1 > λmax (j = 0,1, . . .), and the in-
dex n is such that λn+1,0 > λmax (here λmax is the maximal eigenvalue among the first N

eigenvalues). It is worth stressing that the eigenvalues λnk with n > 0 are twice degenerate
and they should appear twice in the above sequence. The matrix B is then decomposed into
block matrices Bj :

B =

⎛
⎜⎜⎜⎜⎝

B0 0
B1

B2

· · ·
0 Bn

⎞
⎟⎟⎟⎟⎠ ,

where Bj

k,k′ = Bjk0,jk′0 (j = 0, . . . , n). Since Λ is a diagonal matrix, it can also be written
in a form of blocks. Consequently, the diagonalization of the matrix Λ + hB is reduced to
separate diagonalizations of the (much) smaller matrices Λj +hBj . This gives a tremendous
gain in computational time that allowed us to increase the value of N up to 105.

When studying the long-time regime, only the smallest eigenvalue γ h
0 is needed, and it

turns out to be the smallest eigenvalue of the first block matrix Λ0 + hB0. Although this
statement is not yet proved rigorously, there are strong numerical evidences for its correct-
ness.

3.4 Convergence and Accuracy

In the remainder of this section, we analyze the accuracy of the spectral approach for com-
puting γ h

0 . For this purpose, we consider several examples for which the theoretical value
of γ h

0 is known. Since large h is expected to be more problematic for computing the eigen-
values of the matrix Λ + hB (because the “perturbation” hB is large), the value h = 108 is
taken as a proxy for the limit of h going to infinity. This limit corresponds to a perfectly
reactive/absorbing/relaxing medium, in which particles are “killed” at the first encounter
with A.

Example 1 Ω = (0,1) (the unit interval), A = {0,1} (two endpoints). Figure 1 shows the
smallest eigenvalue γ h

0,N of the matrix Λ + hB truncated to size N × N as a function of N

ranging from 500 to 2500. One gets

γ h
0,N ≈ 9.8696 + 8.0301

N
,

where the limiting value 9.8696 is very close to the theoretical value γ ∞
0 = π2 ≈ 9.8696 . . .

(the smallest eigenvalue of the Laplace operator on the unit interval with Dirichlet boundary
conditions).

Example 2 Ω = (0,1) (the unit interval), A = [0.2,0.8] (subinterval). Figure 2 shows γ h
0,N

as a function of N ranging from 400 to 1000, which can be fitted as

γ h
0,N ≈ 61.593 + 92.92

N
.
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Fig. 1 (Color online) The
smallest eigenvalue γ h

0,N
of the

truncated matrix Λ + hB (of size
N × N ) for Ω = (0,1),
A = {0,1}, h = 108. The error is
almost linear with 1/N

Fig. 2 (Color online) The
smallest eigenvalue γ h

0,N
of the

truncated matrix Λ + hB (of size
N × N ) for Ω = (0,1),
A = [0.2,0.8], h = 108. The
error is approximately linear with
1/N

The limiting value 61.593 is close to the theoretical value γ ∞
0 = π2/(2 · 0.2)2 ≈ 61.685 . . .

(the smallest eigenvalue of the Laplace operator on the interval [0,0.2] with the reflecting
endpoint 0 and the absorbing endpoint 0.2).

In general, when A is a compact subset of the unit interval, we proved that the error of
computation is in the order of 1/N (the proof will be published elsewhere):

γ h
0,N ≈ γ h

0 + const

N
. (11)

At first thought, a slow convergence to the limit may be considered as a significant lim-
itation of the spectral approach. At the same time, the knowledge of the convergence rate
allows one to extrapolate numerical values to the limit. In other words, one can compute
γ h

0,N (or other spectral characteristics) for different N and then fit them by a linear function
of 1/N . It is worth noting that such supplementary steps do not almost increase the compu-
tational time. In fact, once the matrix Λ + hB of the largest available size N is constructed,
finding the eigenvalues of its smaller submatrices is much faster than finding the eigenvalues
of the matrix Λ + hB itself.

Example 3 Ω = {r ∈ R
2 : |r| < 1} (the unit disk), A = ∂Ω (its boundary). Figure 3 shows

γ h
0,N as a function of N ranging from 5000 to 17000 which can be fitted as

γ h
0,N ≈ 5.7829 + 3.732√

N
.
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Fig. 3 (Color online) The
smallest eigenvalue γ h

0,N
of the

truncated matrix Λ + hB (of size
N × N ) for the unit disk, when A

is the unit circle, and h = 108.
The error is almost linear with
1/

√
N

The limiting value 5.7829 is very close to the theoretical value γ ∞
0 = 5.7832 . . . (the square

of the first positive root α00 of the equation J0(z) = 0, which is the smallest eigenvalue of
the Laplace operator on the unit disk with Dirichlet boundary condition).

Example 4 Ω = {r ∈ R
2 : |r| < 1} (the unit disk), A = {r ∈ R

2 : |r| < r0} (smaller disk of
radius r0 = 0.5 shown on Fig. 5a). Figure 4 shows the value γ h

0,N as a function of N ranging
from 104 to 1.9 · 104 which can be fitted as

γ h
0,N ≈ 7.345 + 81.016√

N
.

The limiting value 7.345 is very close to the theoretical value 7.3474 . . . (the square of the
first positive root of (13) from Appendix B with r0 = 0.5, which is the smallest eigenvalue
of the Laplace operator on the circular layer with inner absorbing circle and outer reflecting
circle).

In general, the error of computation is expected to be in the order of 1√
N

:

γ h
0,N ≈ γ h

0 + const√
N

.

A slower convergence for two-dimensional domains is expected from Weyl’s asymptotic
law for the eigenvalues: λN ∼ N2/d [59]. In fact, the error of computation is related to the
largest eigenvalue λN in the truncated matrix Λ so that (11) implies the error to be in the
order of λ

−1/2
N in the one-dimensional case. Assuming the same behavior of the error in

higher dimensions, one gets the error in the order of N−1/d , as confirmed by numerical
results. Although the convergence is even slower in two dimensions than in one dimension,
an extrapolation can still be used to get accurate results (e.g., see Examples 3 and 4).

A significant improvement can be achieved for rotation-invariant functions B(r). As
shown in Sect. 3.3, the matrix Λ+hB has a block structure, and the computation is reduced
to the diagonalization of each block. We checked numerically that the smallest eigenvalue
of a block matrix of size n × n behaves as

γ h
0,n ≈ γ h

0 + const

n
,

as in the one-dimensional case. The extrapolation is also useful. In summary, the computa-
tion for the rotation-invariant case runs faster and uses a smaller number of eigenvalues to
estimate more accurately the value of γ h

0 than in the general case.
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Fig. 4 (Color online) The
smallest eigenvalue γ h

0,N
of the

truncated matrix Λ + hB (of size
N × N ) for the unit disk, when A

is a smaller disk of radius
r0 = 0.5, and h = 108. The error
is approximately linear with
1/

√
N

Fig. 5 (Color online) Several
shapes of the reactive region A

inside the unit disk. (a) A smaller
disk of radius r0 centered at the
origin; (b) the union of M

identical angular sectors of angle
β , with the total area SA = Mβ/2
fixed to be π/4. (c) A circular
annulus of the inner and outer
radii r0 − δ/2 and r0 + δ/2,
centered at the origin; (d) the
union of M − 1 annuli centered
at the origin, with the inner and
outer radii ri − δ/2 and ri + δ/2,
and ri = i/M , i = 1, . . . ,M − 1

4 Numerical Results

4.1 Surface Reaction on the Unit Circle

As we already mentioned, reactive regions may lie either in the bulk, or on the boundary of
a confining domain. In the latter case, although the boundary is formally reflecting, particles
can eventually react when hitting the boundary. Traditionally, partially reflecting-absorbing
surfaces are modeled through Robin (also known as Fourier, third, radiation, mixed, etc.)
boundary condition [60–63]:

∂uh
m(r)
∂n

+ huh
m(r) = 0 (r ∈ ∂Ω),

with a positive constant h. In the presented spectral approach, the reflecting character of the
surface is incorporated through the Laplace operator eigenfunctions with Neumann bound-
ary condition, while the absorbing counter-part is introduced through the matrix B. As
pointed out in [48], such a separation of reflection and absorption “mechanisms” has several
advantages. First, one can easily introduce heterogeneous reaction rate on the boundary (as
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illustrated below). Second, the eigenfunctions uh
m(r) with Robin boundary condition depend

on h, and have to be recalculated for each value of h. In turn, h appears as a constant in the
matrix Λ + hB so that there is no need for reconstructing the matrices Λ and B.

A numerical validation of the above implementation of the surface reaction mechanism
was illustrated on Figs. 1 and 3. In these examples, the Laplace operator eigenfunctions
with Neumann boundary condition (reflecting surface) were used to compute γ ∞

0 , that is the
smallest eigenvalue of the Laplace operator with Dirichlet boundary condition (absorbing
boundary). The accuracy of this computation was remarkably good.

In order to illustrate the use of heterogeneous reaction rate on the surface, we consider
two cases. First, we take A to be an arc of length 2ε. When ε is small, this is so-called narrow
escape problem which was thoroughly studied by Singer et al. [27, 28]. In particular, they
found the exact formula for the mean exit time from the unit disk. As discussed in Sect. 2.3,
the survival probability allows one to investigate first passage times and other time statistics
of Brownian motion in reactive media. In Appendix C, we express the mean exit time in
terms of the spectral characteristics γ h

m and Ah
m and compare the numerical results to the

exact formula.
Second, we choose A to be the union of M identical arcs of the unit circle:

A =
{

r ∈ R
2 : r1 = cosϕ, r2 = sinϕ, ϕ ∈

M⋃
k=1

(
2πk

M
,

2πk + L

M

)}
.

The total length L of these arcs is fixed. The smallest eigenvalue γ h
0 for h = 108 is extrapo-

lated to the limit N → ∞ and plotted on Fig. 6 as a function of M for L = 2π/5. One can
see that γ h

0 rapidly approaches the limit 5.7829 . . . as M increases. The same behavior was
observed for other choices of the total length L (ranging between 0 and 2π ). It means that a
partly reactive boundary, in which many small reactive grains are equidistributed, has almost
the same overall reaction rate as a fully reactive boundary, i.e., a small amount of catalytic
grains (here, small length L) works as efficiently as a large amount of catalytic grains. In
other words, if the catalytic grains are equidistributed over the surface, its performance is
independent of the amount of catalytic grains (the length L).

This result, which sounds paradoxical at first thought, has a simple probabilistic explana-
tion. When Brownian motion first hits the boundary at some point r, it is killed immediately
if r ∈ A, or reflected otherwise. In the latter case, Brownian motion continues the diffusive
exploration of the bulk near the boundary. If the boundary is smooth, reflected Brownian
motion returns to the boundary after the first hit infinitely many times during an infinitely

Fig. 6 (Color online) The
extrapolated smallest eigenvalue
γ h

0 for the unit disk, when A is
composed of M identical arcs of
the unit circle. The total length L

is kept to be 2π/5 for different
M , and h = 108. When M

increases, the eigenvalue γ h
0

rapidly approaches the limit
5.7832 . . . which corresponds to a
perfectly reactive circle (cf.
Fig. 3)
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short time period. During these multiple reflections, Brownian motion explores the vicinity
of the first hitting point. In the limit of M → ∞, a small absorbing arc is always located near
this point, and Brownian motion finds it with probability 1. In other words, after the first ar-
rival onto the boundary, reflected Brownian motion finds the reactive region within infinitely
short time when M → ∞. As a consequence, there is almost no difference between reac-
tion at the first hit (on a perfectly reactive boundary) and reaction after many infinitely short
reflections (on a boundary with many equidistributed reactive regions). Another (analytical)
proof of this result is given in Appendix A.

Although the above result is justified from a mathematical point of view, it still remains
puzzling from a physical point of view. It is worth recalling that the classical model of
Brownian diffusion towards perfectly reactive regions has limitations. In fact, the above
mathematical consideration assumed that

– Brownian diffusion describes the motion of particles at any length scale that is obviously
not true (diffusion is an accurate model only at length scales that are much longer than
the mean free path of particles);

– the length of individual arcs can be arbitrarily small (resulting from the limit M → ∞
with the fixed total length L) which is not applicable (there is always a minimal cut-off,
e.g., the size of molecules);

– the reactivity is infinite which may also be questionable.

Since diffusion equation and the underlying spectral description are broadly applied to de-
scribe migrations and reactions of molecules in chemistry and biology, one should keep in
mind potential limitations and pitfalls of this model. In particular, the use of a finite reactivity
may be a way to overcome the above paradoxes (see below).

4.2 Infinite Reactivity in the Bulk

In analogy to Sect. 4.1, we consider A to be the union of M identical sectors of the unit
disk (Fig. 5b), with the total surface area SA to be fixed π/4. For numerical computations,
h = 108 is chosen as a proxy for the infinite limit. Table 1 shows the values of γ h

0 , which
tend to SAh/π for increasing M (see Appendix A).

If the reactivity h was infinite, one would expect γ ∞
0 → ∞ as M → ∞, independently

of the total surface area SA. Although the probabilistic argument from Sect. 4.1 formally ex-
plains this seemingly paradoxical behavior, this mathematical result is not applicable to real
physical systems because of the limitations evoked in Sect. 4.1. In what follows, we focus
on the case of a finite reactivity which seems to be more relevant for practical situations.

4.3 Finite Reactivity in the Bulk

When the reactivity h is finite, the amount of reactive grains can be naturally characterized
by hSA, SA being the total area of the reactive region. Fixing hSA, one may wonder how the

Table 1 The extrapolated smallest eigenvalue γ h
0 for the union of M identical sectors of the unit disk

(Fig. 5b), with the total surface area SA = π/4, and h = 108. When M increases, γ h
0 approaches the limit

h/4 = 2.5 · 107

M 1 5 10 15 20 30 35 50

γ h
0 2.43 30.26 126.18 626.38 807.15 1.50 · 105 2.49 · 106 2.49 · 107
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reaction performance of the medium depends on the reactivity h and the shape of the reactive
region. For instance, what is the shape of the most reactive medium? For the computations
of this section, we fix hSA = π and analyze the smallest eigenvalue γ h

0 . We focus on the unit
disk as the confining domain.

In the trivial case A = Ω , (8) yields Bm,m′ = δm,m′ due to the orthogonality of the eigen-
functions. The matrix BΩ is just the identity matrix, and γ h

0 is equal to h.

Example 1 A = {r ∈ R
2 : |r| < r0} (the disk of radius r0). The condition hSA = π implies

h = 1/r2
0 which varies from 1 to infinity as r0 goes from 1 to 0. The behavior of γ h

0 is shown
on Fig. 7.

When r0 is close to 1, the reactive region is nearly the whole disk so that γ h
0 ≈ h ≈ 1.

In the opposite limit of r0 going to 0, the values γ h
0 approach 0, as one may expect for a

shrinking reactive region. However, the decay is logarithmically slow, as in the case of a
perfectly reactive region (h = ∞). In fact, the probability for Brownian motion to find (and
then react immediately on) a small disk vanishes logarithmically with its radius r0 in two
dimensions. The asymptotic behavior of γ ∞

0 as r0 → 0 is given in Appendix B. On the other
hand, for a reactive region with fixed h, a perturbative theory yields

γ h
0 ≈ λ0 + hB0,0 = hr2

0 (r0 → 0)

that is a much faster decay. The example shown on Fig. 7 is a somewhat intermediate sit-
uation, in which the condition hSA = π makes the first-order perturbative term hr2

0 to be
constant. In this case, the whole perturbative series has to be computed for a fixed r0, and
the resulting sum turns out to decay logarithmically as r0 → 0.

Since γ h
0 decays logarithmically, even a very small reactive region yields a significant

reaction rate γ h
0 as shown on Fig. 7 (although the values of γ h

0 seem to approach a positive
constant, it is a visual deception).

Example 2 A = {r ∈ R
2 : r0 − δ/2 < |r| < r0 + δ/2}. Another interesting example is a

circular annulus with the inner and outer radii r0 − δ/2 and r0 + δ/2 (Fig. 5c). When δ is
small, the matrix B can be approximated as

Bnkl,n′k′l′ =
∫ r0+δ/2

r0−δ/2
dr r

∫ 2π

0
dϕunkl(r, ϕ)un′k′l′(r, ϕ) ≈ r0δB(0,r0)

nkl,n′k′l′ ,

Fig. 7 (Color online) The
extrapolated smallest eigenvalue
γ h

0 as a function of the radius r0
of the reactive region (the disk)
shown on Fig. 5a, with hSA = π
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Fig. 8 (Color online) The
extrapolated smallest eigenvalue
γ h

0 as a function of the radius r0
of the reactive region (the
annulus of width δ) shown on
Fig. 5c, with hSA = π and δ → 0

where

B(0,r0)

nkl,n′k′l′ =
∫ 2π

0
dϕunkl(r0, ϕ)un′k′l′(r0, ϕ)

is the matrix B for a perfectly reactive circle of radius r0 (centered at the origin). Since the
condition hSA = π implies hr0δ = 1/2, the matrix Λ + hB becomes

Λ + hB ≈ Λ + hr0δB(0,r0) = Λ + 1

2
B(0,r0).

The behavior of γ h
0 is shown on Fig. 8. Interestingly, there is an optimal radius r0 ≈ 0.7

for which a thin circular annulus has the highest reaction rate γ h
0 . The latter is slightly

below 1 that is the reaction rate for a uniformly filled unit disk (under the condition of fixed
hSA = π ). This is an example of geometry optimization for reactive media (see below).

Example 3 Multiple equidistant annuli shown on Fig. 5d.
Next, we consider A be to the union of M thin annuli shown on Fig. 5d, each annulus

having the width δ. The total area SA is πδ(M − 1), implying hδ(M − 1) = 1. When δ → 0,
the matrix Λ + hB converges to

Λ + hB ≈ Λ + hδ

M−1∑
i=1

ri B(0,ri ) = Λ + 1

M(M − 1)

M−1∑
i=1

i B(0,ri ).

As shown on Fig. 9, the value of γ h
0 tends to 1 when the number M of annuli increases.

Our numerical examples suggest that a uniform filling of a medium with reactive grains
of finite reactivity h provides the highest overall reaction rate γ h

0 . This seems to be the
optimal geometry of the reactive region under the constraint of fixed hSA. A theoretical
argument supporting this suggestion is presented in Appendix D, while a rigorous proof is
still missing. However, such a uniform filling is not available in many practical situations
(e.g., when multiple processes have to be maintained in parallel, like in the case of a living
cell). In this case, one may wonder whether it is possible to fill the medium heterogeneously
nearly as good as uniformly, and what is the optimal shape of the reactive region (perhaps,
under some additional constraints).

Two examples of this section illustrate these issues. Figure 8 shows that there is an op-
timal radius for a single thin circular annulus (i.e., under specific geometrical constraint),
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Fig. 9 (Color online) The
extrapolated smallest eigenvalue
γ h

0 as a function of the number
M of annuli shown on Fig. 5d,
with hSA = π and δ → 0

while Fig. 9 confirms that the performance of several thin circular annuli is nearly as good
as the best one (for uniform filling). These “toy” models can be considered as the first steps
towards geometrical design and engineering of optimal catalysts and diffusive exchangers.

Conclusion

We presented a spectral approach for computing the survival probability of reflected Brown-
ian motion in reactive media. For arbitrary spatial distribution B(r) of trapping, reaction or
relaxation rate, a multi-exponential representation of the survival probability was derived.
Its amplitudes Ah

m and characteristic times 1/γ h
m were expressed through the spectral proper-

ties of the two infinite-dimensional matrices Λ and B which represent the Laplace operator
and the distribution B(r) in the Laplace operator eigenbasis on a chosen confining domain.
The advantage of such a representation is that the geometrical complexity of the problem
(i.e., the shape of reactive regions) is incorporated through the matrix B, independently of
the Laplace operator eigenbasis. In other words, computation of the eigenfunctions, which
is often the most time-consuming step, has to be performed only once for a given confining
domain. Moreover, in many cases, the shape of the confining domain is irrelevant, and sim-
ple confining domains such as a disk or a sphere can be used. In these cases, the Laplace
operator eigenfunctions and eigenvalues are known explicitly that significantly simplifies
computations. For this reason, we considered the unit disk as a confining domain.

From a numerical point of view, the computational performance of the spectral approach
may be inferior to other numerical techniques. It is not surprising because the conventional
techniques (such as Monte Carlo simulations or finite difference or finite element methods)
search for a single solution of a diffusive problem with a given set of physical parameters.
On the contrary, the use of eigenfunctions allows one to find (or, at least, to formally express)
all the solutions at once and to analyze the structure of these solutions and their dependence
on physical parameters. This much more detailed information comes at the cost of more
time-consuming computations. In the general case of any spatial distribution of reactive re-
gions, the accuracy of the algorithm is in the order of N−1/d , while the computational time
for finding eigenvalues of an N × N matrix grows as O(N3), where N is the number of
the eigenfunctions used, and d is the space dimension. Nonetheless, an extrapolation to the
limit N → ∞ allows one to get reasonably accurate results. In addition, we showed that
significant improvements in computational time and accuracy can be achieved for rotation-
invariant reactive regions. More importantly, a multi-exponential representation (6) of the
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survival probability provides a much deeper insight onto diffusive processes in reactive me-
dia than other numerical techniques. The spectral approach computes separately a large
number of terms in (6), while other techniques approximates the whole sum. As a con-
sequence, an accurate determination of rapidly decaying terms (with high eigenvalues) is
unfeasible by conventional methods.

Using the spectral approach, we studied the role of the geometrical structure of reactive
regions and its influence on the overall reaction rate γ h

0 in the long-time regime. For this pur-
pose, we computed the survival probability in several model reactive media and showed that
the shape and spatial arrangement of reactive regions could significantly affect γ h

0 . When
the reactivity h was infinite, the confining domain could be filled with numerous reactive
regions of arbitrarily small total surface area to make the overall reaction rate arbitrarily
high. Although this seemingly paradoxical result was justified from a mathematical point of
view, it could not have practical applications because of the physical limitations of diffusion
model. For the case of finite reactivity h, we discussed the optimization of the geometri-
cal shape of reactive regions under the constraint of having fixed total reactivity (i.e., fixed
product hSA). A uniform filling with A = Ω appeared as the optimal solution yielding the
highest reaction rate. In turn, heterogeneity tends to reduce the reaction rate. However, when
such a uniform filling is not possible (or undesired), one can still arrange the reactive regions
heterogeneously in a way to get the reaction rate almost as good as the optimal one. This
is an interesting perspective for designing the geometrical shapes of efficient catalysts or
diffusive exchangers.

Acknowledgement The work has been partly supported by the ANR grant “DYOPTRI”.

Appendix A: Equidistributed Arcs and Sectors

When a reactive region A lies on the boundary of the unit disk, finding the elements of the
matrix B is reduced to computation of integrals over the angular coordinate ϕ that can be
performed analytically. For instance, if the reactive region is composed of M identical arcs
of angle β which are equidistributed over the circle (Sect. 4.1), the truncated matrix B of
size N × N takes a simple form for M > 2N + 1

Bnkl,n′k′l′ = [2δn,n′δl,l′(1 − δl,1δl′,1δn,0δn′,0)βnkβn′k′ ]Mβ

2π
(12)

(when M ≤ 2N + 1, a more complicated explicit formula can also be derived). When M in-
creases in such a way that the total length L = Mβ of the arcs is kept constant, the truncated
matrix B is

B = L

2π
B(∂Ω),

where B(∂Ω) denotes the matrix in the large brackets of (12) and corresponds to the matrix
B for the reactive region A = ∂Ω (the whole boundary of the unit disk). As a consequence,
the survival probability for a large number M of arcs (partly reactive boundary) turns out to
approach the survival probability for the whole circle (fully reactive boundary) when h = ∞.

Similarly, when A is the union of M identical angular sectors of angle β which are
equidistributed in the unit disk (Fig. 5b), the truncated matrix B gets a simple form

B = SA

π
I,

where the identity matrix I is the matrix B for the unit disk.
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Appendix B: Analytical Results for Reactive Disks

We consider the survival probability for infinitely reactive region (h = ∞) in the shape of a
disk of radius r0 centered at the origin (Fig. 5a). This problem is equivalent to diffusion in
a circular layer Ω1 = {r ∈ R

2 : r0 < |r| < 1} with the absorbing inner circle of radius r0 and
the reflecting outer circle of radius 1. The smallest eigenvalue α2 of the Laplace operator in
this layer is determined by the first positive root α of the following equation [53, 56, 57]

J0(αr0)Y
′
0(α) − Y0(αr0)J

′
0(α) = 0, (13)

where J0(z) and Y0(z) are the Bessel functions of the first and second kind, respectively.
Solving numerically this equation, one can find the theoretical value γ ∞

0 = α2 for any r0

between 0 and 1. In the limit of r0 going to 1, the following asymptotic behavior can be
derived

γ ∞
0 ≈ π2

4(1 − r0)2
(r0 → 1). (14)

In the opposite limit of r0 going to 0, the asymptotic behavior of Bessel functions allows
one to reduce (13) to

γ ∞
0 ≈ 2

ln(a/r0)
+ ln(ln(a/r0)/2)

(ln(a/r0))2
(r0 → 0), (15)

where a = 2e−γ and γ = 0.5772157 . . . is the Euler-Mascheroni constant. Although γ ∞
0

approaches 0 as r0 → 0, the decay is logarithmically slow so that even very small reactive
regions may yield significant reaction rates, as shown on Fig. 7. Note that the logarithmically
slow decay is the specific feature of the two-dimensional case.

It is worth noting that the limits r0 → 1 and h → ∞ cannot be exchanged. In fact, for
numerical computations, one always uses a large but finite value of h (e.g., h = 108). In this
case, the asymptotic behavior of γ h

0 as r0 → 1 is different from (14). Denoting ε = 1 − r0,
we have

B = B(Ω) − B(Ω1) ≈ I − εB(∂Ω),

where B(∂Ω) corresponds to B(r) = I∂Ω(r). The matrix Λ + hB can then be approximated
as

Λ + hB ≈ (Λ + hI) − hεB(∂Ω).

For a finite h, the last term appears as a correction to the first one so that

γ h
0 ≈ h(1 − O(ε)) (ε → 0).

Appendix C: Narrow Escape Problem

Singer and co-workers dealt with the exit problem from the unit disk with reflecting bound-
ary, except for an absorbing arc of length 2ε [27, 28]. For Brownian motion x(t) started
from the origin, the mean exit time is found to be

E[τ |x(0) = (0,0)] =
√

2

2π

∫ π−ε

0

u sin u
2√

cosu + cos ε
du + 1

4
. (16)
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When the absorbing part shrinks to zero, this formula yields the following asymptotic be-
havior

E[τ |x(0) = 0] = log
1

ε
+ log 2 + 1

4
+ O(ε).

These two analytical formulas can be used for checking spectral computations.
Starting from the origin is introduced into the spectral approach through the point-like

initial density ρ(r0) = δ(r0), where δ(r0) is the Dirac distribution. The vector U becomes

Unkl = δn,0δl,0

Jn(αnk)
, n = 0,1, . . . , k = 0,1, . . . , l = 0,1.

Since the weighting function ρ̃(r) remains constant, the vector Ũ does not change:

Ũnkl = δn,0δk,0δl,0, n = 0,1, . . . , k = 0,1, . . . , l = 0,1.

Using (6), the mean exit time from the unit disk can be computed as

E[τ |x(0) = (0,0)] =
∞∑

m=0

A∞
m

γ ∞
m

. (17)

Figure 10 helps to compare (16, 17) for the mean exit time as a function of ε. As we dis-
cussed in Sect. 3.3, the accuracy of the spectral approach decreases when ε is getting smaller.
Since the spectral computation of the mean exit time includes both the truncation of the ma-
trix Λ + hB and the truncation of the series in (17), the results are not as good as for the
smallest eigenvalue γ h

0 . Nevertheless, an extrapolation helps to get reasonably accurate re-
sults even for small ε (up to 0.01).

A more direct comparison can be realized for the smallest eigenvalue γ ∞
0 whose asymp-

totic behavior was derived by Ward and co-workers [32]. For a single arc of length 2ε, their
asymptotic formula reads as

γ ∞
0 ≈ − 1

ln(ε/2)
− 1

8[ln(ε/2)]2
+ O([ln(ε/2)]−3). (18)

Since the expansion parameter here is ln(ε/2) (and not ε itself), this formula is only ap-
plicable for small ε. On Fig. 11, we compare the asymptotic result (18) to the γ ∞

0 computed

Fig. 10 (Color online) The
relative error between the exact
formula (16) and the truncated
spectral representation (17) for
the mean exit time from the unit
disk whose boundary is reflecting
but for an absorbing arc of
length 2ε
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Fig. 11 (Color online) The
smallest eigenvalue γ ∞

0 for the
unit disk when the reactive region
is an arc of length 2ε (with
h = 108). When 2ε goes to 2π

(the whole circle), γ ∞
0

approaches the theoretical value
5.7829 . . . , as expected. The
asymptotic formula (18) is
accurate for small ε but
inapplicable for large ε

by the spectral approach. As expected, two curves are close to each other for small ε. It
is worth stressing again that, for smaller ε, the spectral computation requires larger matri-
ces and takes longer time, while the asymptotic formula is getting more accurate. On the
contrary, when 2ε exceeds 1, the asymptotic formula becomes less and less accurate, and it
finally diverges at ε = 2.

In summary, when the reactive regions are very small, perturbative techniques are pre-
ferred [27, 28, 30–34]. In turn, the spectral approach is more appropriate for extended reac-
tive regions, for which perturbative techniques become useless. These two approaches are
complementary to each other.

Appendix D: Optimal Reactive Region

Numerical evidences (Figs. 7, 9) suggest that a uniform filling of a confining domain pro-
vides the highest overall reaction rate γ h

0 under the condition that the total amount of reac-
tive grains is fixed. We propose a theoretical argument in favor of this statement, although
a rigorous proof is still missing. This argument relies on a perturbation theory applied to
the matrix Λ + hB. In the limit of small h, the smallest eigenvalue γ h

0 can be written as a
perturbation series in powers of h. Keeping the terms up to the second order in h, we get

γ h
0 ≈ λ0 + hB0,0 − h2

∑
m>0

B0,mBm,0

λm − λ0
= h

S

∫
Ω

dr B(r) − h2
∑
m>0

B2
0,m

λm

(since λ0 = 0). The first term is the total amount of reactive grains (which may have spatially
heterogeneous reactivities incorporated via B(r)). In our numerical examples, when B(r) =
IA(r), the first term was simply hSA/S. Since this term is supposed to be fixed, the influence
of B(r) on γ h

0 is represented through the second term. For a uniform filling with A = Ω ,
Bm,m′ = δm,m′ so that the second term is zero. Since λm > 0, the uniform filling is indeed
optimal for getting the highest γ h

0 :

γ h
0 ≤ γ h

0,uni = h.

Further analysis is required for a rigorous proof of this result.
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